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It is shown that stress functions exist in a spatially multiply connected volume only if the stresses are such 

that the total effect of each cavity on the volume vanishes. The general form of an arbitrary statically 

admissible stress field in a multiply connected body is found. The non-uniqueness of the stress function 

tensor for a given stress field is investigated. On this basis the general expression for statically admissible 

stress fields in a multiply connected body that satisfy the zero boundary conditions on a part of the surface of 

the body is obtained. 

1. IT IS well known [l-3] that a stress field u that satisfies the equilibrium conditions 

V.a =o (1.1) 

in the volume V can be expressed in terms of stress functions. This expression was subsequently 
generalized [4] to the case of a stress tensor with integrable components, from which, in particular, 
it follows that the stress functions exist even if u is discontinuous and satisfies the additional 
equilibrium conditions 

v-a+ = vqa- on S, (1.2) 

on the discontinuity surface S,. Here v is the normal vector to S,, and u+, u- are the limiting 
values of u, which can be obtained by letting x approach S, from the opposite sides. (All the 
surfaces considered in this paper as well as the lines constituting their boundaries are assumed to be 
smooth and regular, [5], and all the functions are assumed to have continuous derivatives of any 
order used at every point, except perhaps on some surfaces of discontinuity, in which case it is 
assumed that the functions and their derivatives have finite limits as the surface of discontinuity is 
approached from either side.) The following invariant assertion [6--81 has been formulated by 
introducing the stress function tensor cp: Eqs (1.1) and (1.2) are satisfied if and only if 

u = V x (V x cp)* = Ink cp (1.3) 

We remark that in all the articles mentioned above V has been assumed to be a simply connected 
volume. Apparently, the problem of the existence of stress functions in multiply connected volumes 
has not been considered so far. 

We shall first show that, generally speaking, Eq. (1.3) does not follow from (1.1) and (1.2) in the 
case of a multiply connected body, i.e. for the stress function to exist, one must, in fact, impose 
additional restrictions on u. We will assume that (1.3) is satisfied. Then, by Stokes’ formula, we find 
that 

F(a,S) =SSds.a = 
S 

sib*(V X (V X cp)*)= $dx.(V x cp)* 
as 

(1.4) 

where SC V and where F (a, S) is the total force acting on the side of S determined by the terminal 
point of the vector ds. The orientation of the contour 8s used to evaluate the curvilinear integral 
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corresponds in a standard manner to the direction of ds. In particular, if S is a closed surface, it 
follows from (1.4) that F(a, S) = 0 for any stress field u. Now let a be a stress field in a spatially 
multiply connected body V with a cavity and a force F1 # 0 acting on V from within the cavity, and 
let S be a closed surface containing the cavity. If (1.3) were satisfied, then, from what has been said 
above and the fact that the part of V cut off by S is in a state of equilibrium, it would follow that 
F1 = 0, contrary to our assumption. 

The conditions that must be satisfied by the stress field u in order that the stress function tensor 
exists yield the following theorem. 

Theorem 1. Let the cavities contained in a spatially multiply connected body V with multiply 
connected surface be bound by closed surfaces Si , i = 1, . . . , n such that Si O Sj = 0 for i #j. 

Then a stress field that satisfied (1.1) and (1.2) can be represented in the form (1.3) if and only if 

F (u, Si) = 0, M (u, Si) = 0, i = 1, . . ., n (l-5) 

The function F(u, S) is defined by (1.4) and M(u, S) is the total movement (with respect to a 
fixed point) of the forces acting on one side of the surface SC V. 

Proof. The necessity of the first equality in (1.5) follows from the above discussion. The necessity 
of the second equality can be proved in the same way. 

We shall prove that conditions (1.5) are sufficient. To do so, we shall show that u can be extended 
to a simply connected volume V”3 V in such a way that conditions (1.1) and (1.2) are preserved, 
and to the field on V” we shall apply the results on the existence of stress functions in simply 
connected volumes [4]. 

We shall consider a cavity Vi bounded by a surface Si as a rigid body with a load v. a distributed 
on the surface. By (1.5), the load is self-balanced. Thus the stress field oi established inside Vi will 
satisfy (1.1). The body V’ = VU V, U . . , U V,, is spatially simply connected and the stress field u’ 
defined in it so that it coincides with u on V and with Ui in Vi) satisfies (1.1) and (1.2). 

If the surface of V’ is also simply connected, then the proof is completed. Otherwise, let V” be a 
simply connected volume containing V’, Vc> V’. Since V’ is spatially simply connected, it follows 
that V” = V’\V’ is connected and its surface dV” consists of the surface 8V’ of V’ and the remaining 
part S’ = dV”\dV such that S’Z0. We regard V” as an elastic body with the load v-u (generally 
speaking, not self-balanced) distributed over the surface aV ’ and with an additional load on S ’ such 
that the total load on aV” (for example, attached to S’) is balanced. Let u” be the stress field in V”. 
The stress field uC defined inside the simply connected body V” and identical with u’ and a” on V’ 
and V”, respectively, satisfies conditions (1.1) and (1.2) and constitutes the desired extension of u. 

As can be seen from Theorem 1, the fact that the surface of a body is multiply connected does not 
prevent the existence of stress functions. Restrictions (1.5) appear only when Vcontains cavities. In 
this case the general form of the stress fields satisfying (1.1) and (1.2) can be obtained by adding to 
(1.3) some terms that compensate for the influence of each cavity Vi on V. Namely, with the stress 
field u we associate the 6n-dimensional vector 

N (a) = (F 6% S,); M (a, SJ; . . . F (0, S,); M (a, Sn)) 

and we assume that there are known tensor fields ui (j = 1, . . . , 6n) satisfying (1.1) and (1.2) such 
that the corresponding vectors N(uj) are linearly independent. From Theorem 1 we obtain the 
following corollary. 

Corollary 1. A symmetric tensor field u in a spatially (n + 1)-connected volume with multiply 
connected surfaace satisfies (1.1) and (1.2) if and only if 
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(1.6) 

for some symmetric tensor cp and some numbers cj . 

2. By means of (1.3), cp can be determined from a given tensor u in a non-unique way, since the 
equality 

Ink cp EOon V (2.1) 

is satisfied for any non-zero tensor Q of the form 

cp = V2 IVq + (Vq)*l = def q (2.2) 

where q is an arbitrary vector field on V. 
If V is a simply connected volume, then the kernel of the operator Ink can be completely 

described by means of tensors of the form (2.2) [6]. 
Let us investigate the structure of this kernel in the multiply connected case. 
Let L be an oriented curve. We set 

P (h cp) = swv x cp) * 
q & cp)=~d~+p--bl - 4 x (V x cpw? L (h cp) = (PC q) (2.3) 

where x1 is a fixed point and x is a “moving” point (integration is carried out with respect to the 
latter point). The integrals in (2.3) are evaluated over the curve L in the direction determined by its 
orientation. 

Lemma 1. The tensor Q can be represented in the form (2.2) if and only if 

a w, q) = 0 (2.4) 

for any closed curve L C V. 

Proof. We shall make use of a geometric analogy [6]. If we regard q as the displacement vector and cp as the 
tensor of small deformations, then (2.1) will serve as the compatibility condition for Q and (2.3) will be the 
Cesaro formulas, which reconstruct the displacement vector q and its rotation -2p from prescribed 
deformations. Hence the assertion of the lemma follows immediately. 

From the above geometric analogy it also follows that, for a body with multiply connected surface 
(for example a torus), the kernel of the operator Ink is larger than the set of tensors of the form 
(2.2), since in this case the local compatibility of the deformations does not, in general, imply global 
compatibility. 

In the subsequent analysis we shall need the following definitions. 
We shall say that closed oriented curves L’ and L” are equivalent in a volume V if, by means of a 

continuous deformation, L’ can be combined with L” (so that their orientations coincide) or with a 
curve L,” that differs from L” only by segments that are traversed the same number of times in 
opposite directions. The equivalence classes generated by this relation will be referred to as cycles 
on V and denoted by G. 

If two cycles G ’ and G” coincide with each other, we shall write G’YG”. The cycle G consisting 
of curves equivalent to ones that are contractible to a point in V will be called the zero cycle. We 
shall write GTO. The cycle consisting of the same closed curves as G but with opposite orientation 
will be denoted by - G. 

We introduce the notion of the sum of two cycles G1 and G *. To do so, we note that, since V is 
connected, G1 and G2 always contain curves L1 and L2 with a common segment L’ traversed in 
opposite directions. We consider an oriented curve L” that can be obtained from L1 and L2 by 
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discarding the common part L’ and L1 and L2 so that the orientation of the curves is preserved. The 
cycle generated by L” will be called the sum G1 + G2. 

The cycle G’ + (-G”) will be called the difference G’ - G”. The product kG of a cycle and an 
integral number will be defined as the sum (the difference) of the given number of cycles. 

One can verify that the above operations turn the set of cycles into a linear space over the ring Z 
of integral numbers (which is isomorphic to one-dimensional homologies of V). 

A system of cycles { Gk}& is called a basis in the space of cycles on V if any cycle is a linear 
combination of Gk and none of the cycles Gk is a linear combination of the other cycles belonging to 
the basis. 

A spatially multiply connected body V (of finite dimensions) with multiply connected surface is, in 
general, bounded by an (n + 1)-connected surface Si (& fl Sj = 0 for i #j), where n is the number of 
cavities in the body, each of the surfaces Si being a connected two-dimensional oriented manifold 
without a boundary. Starting from the fact that each of the surfaces Si is homeomorphic to a sphere 
with ri handles [9], one can prove that there exists a basis in the space of cycles (and 
m=r*+. . .+r,). 

We shall now prove that if condition (2.1) is satisfied, then the vector-valued function A defined 
by (2.3) is constant on closed curves belonging to the same cycle and so it can be regarded as a 
function h(G, cp) defined on the set of cycles. 

Indeed, let L’, L”E G and let SC V be a surface on which the curve L’ can be deformed into L,“. 
Applying formula (1.4) to the doubly-connected surface S and using (2.1) and (2.3), we get 

0 = dx.(G x cp)* =p(L’,cp)-p(L,“, cp) (2.5) 

In (2.5) it is taken into account that 6’s = L’ CL” and the direction in which as is traversed when 
evaluating the curvilinear integral over one of the curves L’ or L,” (for example, L,“) is opposite to 
its orientation. By analogy, one can also derive the other required equality q (L’, q) = q (L”, cp). 

The vector-valued function h(G, cp) obtained in this way, which is defined on the set of cycles and 
tensor fields that satisfy (2.1), turns out to be linear both in G and cp. 

Lemma 2. let { Gk}‘& be a basis in the space of cycles on V, and let ak = (pk, qk), where k = 
1 2 * * *, m, be an arbitrary system of fixed vectors in R 6 (pk , qk E R 3). 

Then there exists a symmetric tensor field cp that satisfies (2.1) such that 

X (&, cp) = a,,, k = 1, . . ., m (2.6) 

Proof. We fix i (1 G is m) and consider a torus Vi 1 V such that Gi z 0, and Gi ; 0 for j # i. It is possible to 

construct such a torus, since the surface of v is homeomorphic to a sphere with haidles and Vi can be obtained 
by “attaching“ additional handles. 

Let L E Gi and let the surface S cut Vi into a simply connected body and intersect L at a single point. We 
denote by V,’ and V,- the E-layers of Vi adjacent to the opposite sides of S, and we define a vector-valued 
function qi(X) (qiER3) as fOllOWS: 

0 for x E V,- 

Qi tx) = 
Qi --&plxx for XEV~+ 

For the remaining xE Vi the function qi(x) can be defined as an arbitrary smooth function. (If qi(x) is regarded 
as the displacement vector, then the layer V, - is immovable and the whole layer V,’ is displaced and rotated as 
a rigid body.) We define Cpi to be the strain tensor associated with the displacement q; by means of the Cauchy 
formulas (2.2). Then Ink Cpi’O, and, by virtue of the above geometric analogy, 

5 (& cp,) = al and i (L’, cpl) = 0, if L’ E Gr for I# I. 

Carrying out the same construction for each i and Setting Q = cpl+ . . . + Q, , we can obtain the desired result. 
The assertion below, which describes the kernel of Ink in the multiply connected case, follows 

from Lemmas 1 and 2. 
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Corollary 2. Let { Gk}‘& be a basis in the space of cycles on V, let h(cp) = X(Gi , cp), . . . , 
X(G,,cp)andletcp,(i=l, . . . . 6m) be tensor fields that satisfy (2.1) such that the corresponding 
6m-dimensional vectors A (cpi) are linearly independent. 

Then cp satisfies (2.1) if and only if 

cp = def q + cr(p~ + . . . + c,mqam 

for some vector field q and some numbers ci . 

3. We will consider the problem of expressing the general form of a stress field that satisfies (1.1)) 
(1.2)) and the additional condition 

v-a = 0 on SF c av (3.1) 

where CFIV is the surface of the multiply connected body V, in terms of the stress function tensor 
(1.3). 

For a simply connected volume and the case SF = aV, it has been shown [lo] that the general 
solution of the system of equations (l.l), (1.2) and (3.1) can be obtained in the form 

u = Ink (w%) (3.2) 

where + is an arbitrary symmetric tensor and the (fixed) function o(x) satisfies the conditions 

0 (x) = 0, a03 (x)/~V + 0 for x E SF (3.3) 

w (x) > 0 for x E V \ SF 

If SF#t3V, then, generally speaking, (3.2) is not the general solution even if V is simply 
connected. Indeed, for example, let V be a cylinder that is being stretched along its axis and whose 
lateral surface SF is free of any loads, and let S be a cross-section of the cylinder with boundary as 
lying on SF, HCS,. If the representation (3.2) were satisfied [i.e. cp = w2JI in (1.3)], then it would 
follow from the first equality in (3.3) that the integral on the right-hand side of (1.4) vanishes and 
the total force on S is equal to zero, contrary to the assumption that the cylinder is being stretched. 
In a similar manner one can obtain the stress field inside a torus, the entire surface of which is free of 
any loads. The latter stress field cannot be expressed in the form (3.2). 

The following theorem describes the set of those stress fields in a multiply connected volume V 
that can be expressed in the form (3.2). 

Theorem 2. Let SzI = W\SF be a part of the smooth surface dV of a body V of finite dimensions 
consisting of pairwise disjoint connected components Si, i.e. let Srr = Si U S2U. . . US,, where 
SinSi=Ofori#j.LetS,‘CV(k=l,..., t) be connected surfaces bounded by a&‘C SF such that 
the intersection of any of them with V is a connected set,? but the addition of an intersecting surface 
S ’ C V such that &S ’ C SF turns the set into a disconnected one, and let 

N ((I) = (F (a, Sd, M (a, Sd, . . ., F (a, 84, M (0, S,), F (a, SI’), 
M (a, Sl’), . . ., F (0, St’), M (0, St’)) (3.4) 

where F(a, S) and M(a, S) are defined by (1.4) and (1.5). 
Then a stress field u that satisfies (1 .l), (1.2) and (3.1) can be represented in the form (3.2) if and 

only if 

N (u) = 0 (3.5) 

Proof. The sufficiency can be proved as in the simply connected case in [l]. 
We shall prove the necessity. Let u satisfy (l.l), (1.2), (3.1) and (3.5). Since condition (1.5) of 

Theorem 1 follows from (3.1) and (3.5), there exists a tensor cp’ such that (1.3) is satisfied. 

t If Su = 0 and/or no surfaces Sk satisfying the given conditions exist, then we set r = 0 and/or t = 0, respectively. For 
r = t = 0, condition (3.5) vanishes. 
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Let L’, L”CSF be closed oriented curves. It can be shown that if L’ and L” belong to the same 
cycle on V, then 

L (L’, cp’) = h (L”, cp’) (3.6) 

Let S’ C V, S’ Q aV be a surface on which L’ can be deformed into L,“. By the assumption of the theorem, 
the surfaces S’ and Sk’ cut Vinto disconnected parts V’ and V”. For example, we shall consider V’. The surface 
of V’ consists of S’, a part of SF, and some of the surfaces Si and S k’. Since the total forces and torques acting 
on the surfaces Si and Sk’ and on any part of S, are equal to zero, it follows from the equilibrium condition for 
V’ that the force and torque acting on S’ are both equal to zero. Next, repeating the argument that follows 
formula (2.9, we can obtain (3.6). 

Thus, if only the curves lying on S, are regarded as the elements of a cycle, then the vector-valued 
function X defined by (2.3) can also be regarded as a function of the cycles (although in this case Ink 

QfO). 
Let { G,}zE1 be a basis in the space of cycles and let ak = h(Gk, Q'). By Lemma 2, there exists a 

tensor field Q" such that Ink Q" = 0 and A (Gk , Q") = -ak . TheII the total field Q = Q' + Q" is a StreSS 
function tensor determining the same stress field a as Q' such that A(G, Q) = 0 for any closed curve 
L lying on S,. The remaining part of the proof is the same as the proof in the simply connected case 
in [lo] [starting from formula (2.6)]. 

We remark that in the assumptions of Theorem 2 it suffices to require that (3.5) be satisfied for 
any (r - 1) subsurfaces Sj , e.g. for S1, . . . , S,_l, since from the equality N(a, S1, , . . , S,_,) = 0 
and the fact that V is balanced as a whole it follows immediately that N(a, S,) = 0. 

Let rl = max(r, 1). We assume that there are 6(r1 + c - 1) known stress fields Us such that the 
vectors N(Ui) associated with them by means of (3.4) are linearly independent. Using Theorem 2, 
one can obtain the general solution of the problem under consideration in the following form. 

Corollary 3. A stress field u satisfies Eqs (l.l), (1.2) and (1.3) if and only if 

atI+ t-0 
(J = Ink@?) + i,$l CP~ (3.7) 

for some symmetric tensor Jr and some numerical coefficients ci . 
Formula (3.7) can be used to construct admissible variations when solving the boundary value 

problems of deformable rigid body mechanics on the basis of Castigliano’s variational principle. As 
opposed to the results of [lo], this formula is applicable to multiply connected bodies even in the 
case when S,#aV. The possibility of finding a variation of the form (3.7) by construction rests on 
the fact that the explicit formulas for the functions o can be obtained by the method of R-functions 
[ll] for regions of almost arbitrary form. 
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